Minimum degree condition for C4-tiling in 3-uniform hypergraphs
نویسنده
چکیده
We show that there is n0 such that if H is a 3-uniform hypergraph on n ∈ 4Z, n ≥ n0, vertices such that δ1(H) ≥ ( n−1 2 ) − ( 3n/4 2 ) + 3n 8 + 1 2 , then H can be tiled with copies of C4, the unique 3-uniform hypergraph on four vertices with two edges. The degree condition is tight when 8|n.
منابع مشابه
Matchings and Tilings in Hypergraphs
We consider two extremal problems in hypergraphs. First, given k ≥ 3 and k-partite k-uniform hypergraphs, as a generalization of graph (k = 2) matchings, we determine the partite minimum codegree threshold for matchings with at most one vertex left in each part, thereby answering a problem asked by Rödl and Ruciński. We further improve the partite minimum codegree conditions to sum of all k par...
متن کاملPerfect Matchings, Tilings and Hamilton Cycles in Hypergraphs
This thesis contains problems in finding spanning subgraphs in graphs, such as, perfect matchings, tilings and Hamilton cycles. First, we consider the tiling problems in graphs, which are natural generalizations of the matching problems. We give new proofs of the multipartite Hajnal-Szemerédi Theorem for the tripartite and quadripartite cases. Second, we consider Hamilton cycles in hypergraphs....
متن کاملLoose Hamilton cycles in 3-uniform hypergraphs of high minimum degree
We say that a 3-uniform hypergraph has a Hamilton cycle if there is a cyclic ordering of its vertices such that every pair of consecutive vertices lies in a hyperedge which consists of three consecutive vertices. Also, let C4 denote the 3-uniform hypergraph on 4 vertices which contains 2 edges. We prove that for every ε > 0 there is an n0 such that for every n n0 the following holds: Every 3-un...
متن کاملMinimum Vertex Degree Condition for Tight Hamiltonian Cycles in 3-uniform Hypergraphs
We show that every 3-uniform hypergraph with n vertices and minimum vertex degree at least p5{9` op1qq ` n 2 ̆ contains a tight Hamiltonian cycle. Known lower bound constructions show that this degree condition is asymptotically optimal. §
متن کاملMinimum vertex degree thresholds for tiling complete 3-partite 3-graphs
Given positive integers a ≤ b ≤ c, let Ka,b,c be the complete 3-partite 3-uniform hypergraph with three parts of sizes a, b, c. Let H be a 3-uniform hypergraph on n vertices where n is divisible by a + b + c. We asymptotically determine the minimum vertex degree of H that guarantees a perfect Ka,b,ctiling, that is, a spanning subgraph of H consisting of vertex-disjoint copies of Ka,b,c. This pa...
متن کامل