Minimum degree condition for C4-tiling in 3-uniform hypergraphs

نویسنده

  • Andrzej Czygrinow
چکیده

We show that there is n0 such that if H is a 3-uniform hypergraph on n ∈ 4Z, n ≥ n0, vertices such that δ1(H) ≥ ( n−1 2 ) − ( 3n/4 2 ) + 3n 8 + 1 2 , then H can be tiled with copies of C4, the unique 3-uniform hypergraph on four vertices with two edges. The degree condition is tight when 8|n.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Matchings and Tilings in Hypergraphs

We consider two extremal problems in hypergraphs. First, given k ≥ 3 and k-partite k-uniform hypergraphs, as a generalization of graph (k = 2) matchings, we determine the partite minimum codegree threshold for matchings with at most one vertex left in each part, thereby answering a problem asked by Rödl and Ruciński. We further improve the partite minimum codegree conditions to sum of all k par...

متن کامل

Perfect Matchings, Tilings and Hamilton Cycles in Hypergraphs

This thesis contains problems in finding spanning subgraphs in graphs, such as, perfect matchings, tilings and Hamilton cycles. First, we consider the tiling problems in graphs, which are natural generalizations of the matching problems. We give new proofs of the multipartite Hajnal-Szemerédi Theorem for the tripartite and quadripartite cases. Second, we consider Hamilton cycles in hypergraphs....

متن کامل

Loose Hamilton cycles in 3-uniform hypergraphs of high minimum degree

We say that a 3-uniform hypergraph has a Hamilton cycle if there is a cyclic ordering of its vertices such that every pair of consecutive vertices lies in a hyperedge which consists of three consecutive vertices. Also, let C4 denote the 3-uniform hypergraph on 4 vertices which contains 2 edges. We prove that for every ε > 0 there is an n0 such that for every n n0 the following holds: Every 3-un...

متن کامل

Minimum Vertex Degree Condition for Tight Hamiltonian Cycles in 3-uniform Hypergraphs

We show that every 3-uniform hypergraph with n vertices and minimum vertex degree at least p5{9` op1qq ` n 2 ̆ contains a tight Hamiltonian cycle. Known lower bound constructions show that this degree condition is asymptotically optimal. §

متن کامل

Minimum vertex degree thresholds for tiling complete 3-partite 3-graphs

Given positive integers a ≤ b ≤ c, let Ka,b,c be the complete 3-partite 3-uniform hypergraph with three parts of sizes a, b, c. Let H be a 3-uniform hypergraph on n vertices where n is divisible by a + b + c. We asymptotically determine the minimum vertex degree of H that guarantees a perfect Ka,b,ctiling, that is, a spanning subgraph of H consisting of vertex-disjoint copies of Ka,b,c. This pa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014